190 research outputs found

    Decoupling the Curve Modeling and Pavement Regression for Lane Detection

    Full text link
    The curve-based lane representation is a popular approach in many lane detection methods, as it allows for the representation of lanes as a whole object and maximizes the use of holistic information about the lanes. However, the curves produced by these methods may not fit well with irregular lines, which can lead to gaps in performance compared to indirect representations such as segmentation-based or point-based methods. We have observed that these lanes are not intended to be irregular, but they appear zigzagged in the perspective view due to being drawn on uneven pavement. In this paper, we propose a new approach to the lane detection task by decomposing it into two parts: curve modeling and ground height regression. Specifically, we use a parameterized curve to represent lanes in the BEV space to reflect the original distribution of lanes. For the second part, since ground heights are determined by natural factors such as road conditions and are less holistic, we regress the ground heights of key points separately from the curve modeling. Additionally, we have unified the 2D and 3D lane detection tasks by designing a new framework and a series of losses to guide the optimization of models with or without 3D lane labels. Our experiments on 2D lane detection benchmarks (TuSimple and CULane), as well as the recently proposed 3D lane detection datasets (ONCE-3Dlane and OpenLane), have shown significant improvements. We will make our well-documented source code publicly available

    Video Salient Object Detection via Fully Convolutional Networks

    Get PDF
    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps)

    Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement

    Get PDF
    We present a novel spatiotemporal saliency detection method to estimate salient regions in videos based on the gradient flow field and energy optimization. The proposed gradient flow field incorporates two distinctive features: 1) intra-frame boundary information and 2) inter-frame motion information together for indicating the salient regions. Based on the effective utilization of both intra-frame and inter-frame information in the gradient flow field, our algorithm is robust enough to estimate the object and background in complex scenes with various motion patterns and appearances. Then, we introduce local as well as global contrast saliency measures using the foreground and background information estimated from the gradient flow field. These enhanced contrast saliency cues uniformly highlight an entire object. We further propose a new energy function to encourage the spatiotemporal consistency of the output saliency maps, which is seldom explored in previous video saliency methods. The experimental results show that the proposed algorithm outperforms state-of-the-art video saliency detection methods
    • …
    corecore